A Thorough Investigation of Link-Based Cluster Ensemble Approach for Data Clustering
نویسندگان
چکیده
Clustering, in data mining, is useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric based (e.g., Euclidean) similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. The problem of clustering becomes more challenging when the data is categorical, that is, when there is no inherent distance measure between data values. Various clustering algorithms are developed to cluster or categorize the datasets. Many algorithms are used to cluster the categorical data. Some algorithms cannot be directly applied for clustering of categorical data. Cluster ensemble has proved to be a good alternative when facing cluster analysis problems. It consists of generating a set of clustering’s from the same dataset and combining them into a final clustering. The goal of this combination process is to improve the quality of individual data clustering’s. This paper presents an overview of clustering ensemble methods that can be very useful for the categorical data clustering. The characteristics of several methods are discussed, which may help in the selection of the most appropriate one to solve a problem at hand. Several attempts have been made to solve the problem of clustering categorical data via cluster ensembles. But these techniques generate a final data partition based on incomplete information. Secondly, we describe several clustering ensembles methods such as including Cluster Ensemble technique, Squared Error Adjacent Matrix algorithm, Hybrid Fuzzy Ensemble, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, simplicity and accuracy on different datasets in previous techniques.
منابع مشابه
A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015